If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+16a+15=0
a = 1; b = 16; c = +15;
Δ = b2-4ac
Δ = 162-4·1·15
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-14}{2*1}=\frac{-30}{2} =-15 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+14}{2*1}=\frac{-2}{2} =-1 $
| 180=4x^2-6-2x^2+19x | | h−36=21 | | -10+5m=10+2m+10 | | (5x+1)=(6x-10) | | -10+5m=10=2m=10 | | 5(6n-8)=190 | | (X+24)=3x° | | (2x+4)(5x-4)-2x(5x)= | | -3(6y-4)+6y=4(y+5) | | (5x-13)+(8x-2)=180 | | (1/3(12x-15)=7 | | 30=-16t^2+24t+30 | | -9+6d=9+4d | | -5x-4=10x-19 | | 150/x=90/100 | | -5h=-3h-10 | | 2n2–6n=8 | | (9+x)-(12+x)=180 | | 2x=(3x+50)+90=180 | | p*6=-14 | | -7c-9=-6c | | 8x-5=16+x | | -w^2+20w-90=0 | | 60+14x=158 | | 5=1.6x+1. | | 60+14x=150 | | (12+x)+(9+x)=180 | | -7-6=2x+12 | | 6+3g=4g | | 10+5r=7r | | 46+(x-12)+x=180 | | 0.03g=6 |